A New Composite Electrode Architecture For Energy Storage Devices

R.E. Ferro, G.M. Swain and B.J. Tatarchuk

Department of Chemical Engineering and the Space Power Institute Auburn University, AL 36849

Acknowledgements

NASA-LeRC Electrochemical Technology Branch Contract # NAG3-1154

Doris Britton Patricia O'Donnell Peggy Reid

T.S. Lee

EVOLUTION OF ELECTRODE ARCHITECTURES

Nickel Hydroxide Half-Cell Reaction Studies

Tatarchuk and co-workers:

- 1. J. Electrochem. Soc., <u>137</u>, 136 (1990).
- 2. J. Electrochem. Soc., 137, 1750 (1990).

Research Objective

How does the electrode architecture (microstructure) affect the performance of the nickel hydroxide electrochemical system?

- A. Determine if the properties of the FIBREX mesh can be improved by sinter bonding small diameter metal fibers into the electrode architecture.
 - * provide an increase in the surface area available for deposition without significantly reducing the void volume thereby reducing the thickness of the active material.
 - * provide an interior network of conducting pathways to reduce the ohmic resistance within the active material.
 - * create an interior void/microstructure which influences crystallite size and defect density in the deposited layer.
- B. Compare the performance of several composite electrode architectures with that of FIBREX mesh and electrodes prepared by Eagle-Picher in short term life-cycle tests.
- C. Determine if there is a synergism between the impregnation method and the electrode architecture (microstructure)
- D. Determine if the composite electrode architectures influence the conditioning time required for full utilization of the active material.

- 1. Nickel FIBREX mesh (28 um dia.)
- 2. Nickel FIBREX mesh/stainless steel fibers (2 um dia.)
- 3. Stainless steel fibers
- 4. Nickel FIBREX mesh/nickel fibers (2 um dia.)
- 5. Nickel fibers

Electrode Preparation

Sintering Conditions

Cell Design For Electrode Cycle Tests

Computerized software developed and tested in our laboratory which provides computer control of the potentiostat/galvanostat and data acquisition during the cycle tests.

Results and Discussion

- I. Unique attributes and properties of the composite electrode architectures.
- II. Discussion of the important variables involved in the electrochemical impregnation of nickel hydroxide and for a given electrode architecture do the characteristics of the impregnation method influence the performance of the electrochemical system.
- III. Evaluation of the performance (% utilization) of the electrochemical system using Eagle-Picher, FIBREX mesh and a variety of composite electrode architectures in short term life-cycle tests.
 - * effect of electrode architecture on performance.
 - * effect of discharge rate on performance.
 - * comparison of times required to reach full utilization.
- IV. Electrode Reaction Kinetics determine the ohmic, polarization and mass transport resistances as a function of loading (thickness) and state of charge using linear sweep and cyclic voltammetry, current-time transients and AC impedance analysis.

- I. Unique attributes and properties of the composite electrode architectures
 - 1. High specific surface area (>100 fold increase in m²/g over FIBREX).
 - 2. Low ohmic resistance within the architecture due to the sinter bonded fibers.
 - Low mass transport resistance within the architecture voids resulting in easy accessibility of electrolytes.
 - 4. Adjustable void volume and surface area over several orders of magnitude.
 - 5. Electronic properties are not dependent on mechanical pressing.

PHYSICAL PROPERTIES OF ELECTRODES

	FIBREX	FIBREX+SS	FIBREX+N	SS	Ni				
BEFORE IMPREGNATION									
Thickness (mils)	35	35	35	19	19				
Weight/ Surf. Area (g/cm ²)	7.8	5.8	5.0	0.11	0.14				
Density (g/cm ³)	0.49	0.55	0.55	0.33	0.35				
Porosity (%)	94.4	93.7	93.7	95.8	95.8				
AFTER IMPREGNATION									
WI of Ni(OH) ₂ / cm ³ of Void	0.42	0.21	0.67	1.12	0.66				
Porosity (%)	80. 9	86.7	74.1	66.0	75.9				
Loading (vol %)	14.3	7.53	21.0	30.8	20.5				

Figure 1. Electron micrograph of a FIBREX/nickel fiber composite electrode prior to impregnation.

Figure 2. Electron micrograph showing the sinter bonded small diameter nickel fibers to the FIBREX mesh.

Figure 3. Electron micrograph of a FIBREX/nickel fiber composite electrode after aqueous impregnation galvanostatically at 10 mA/cm². for 3 hours.

Figure 4. Electron micrograph of the same electrode as above but at higher magnification.

Potential vs. Time Curve for a Nickel Fiber Composite Electrode During Charge and Discharge.

Plot of % Utilization vs. Discharge Rate for

Plot of % Utilization vs. Discharge Rate for a Nickel Fiber and a FIBREX/Nickel Fiber

Composite Electrode.

Plot of % Utilization vs. Discharge Rate for FIBREX/Stainless Steel Composite Electron Different Charge Rates.

Summary

- 1. Microstructure and additional surface area make a difference! Best architectures are the FIBREX/nickel and nickel fiber composite electrodes.
- 2. Conditioning time for full utilization greatly reduced.

< 5 cycles vs. 200 or more

- 3. Accelerated increase in capacity vs. cycling appears to be a good indicator of the condition of the electrode/active material microstructure and morphology. Conformal deposition of the active material may be indicated and important.
- 4. Higher utilizations obtained.
 - > 80% after less than 5 cycles
 - > 300%* after more than 5 cycles using nickel fiber composite electrode assuming a 1 electron transfer per equivalent.

Current and Future Research Efforts

- 1. Broaden fundamental understanding of microstructural influence on utilization, efficiency, charge and discharge rates, proton diffusion rates, deposition synergy, etc.
- 2. Determine influences and physical mechanisms for limiting electrode kinetic processes.
- 3. Optimize electrode microstructure with respect to the above noted constraints, limits and rates for a desired application.
- 4. Examine selected candidate composite electrode structures during long term cycle-tests (>200).
- 5. Evaluate promising candidates in full-cell Ni-H₂ batteries.

•		